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Estimation of Broad Sense Heritability in Plant Populations:

an Improved Method

M. Hiihn

Institut fiir Pflanzenbau und Pflanzenziichtung der Universitit Kiel, Kiel (BRD)

Summary. In the present paper an improved method for estimating broad sense heritability is developed
by generalization and improvement of the method of Sakai and Mukaide (1967); this itself is a generali-
zation and improvement of Sakai and Hatakeyama's (1963) modification of Shrikhande's (1957 ) method
to separately estimate the genetic variance, competitional variance and environmental variance of a
plant population. Some of the assumptions postulated by these former authors - especially the assump-
tion that the covariance between the genetic and competitional effects equals zero - were omitted. If
competitive effects are genetically caused and controlled - and numerous experimental results leave

no doubt about this - then this assumption can not be right. Our proposed improvement and generali-
zation avoids this difficulty by considering competition as a usual quantitative character (for each geno-
type we introduce two quantitative competition-characters: competitive ability and competitive influen-
ce). The expected values of the various terms in the variance of plot means (for plots of different
sizes) were derived to give a system of simultaneous non-linear equations from which the unknown pa-
rameters, genetic variance resp. broad sense heritability, competitional variance, environmental va-
riance etc., can be estimated using least squares methods or direct search methods. The estimates for
broad sense heritability are probably more correct and realistic (because of the altered assumptions
proposed in this method) than the results of the former authors. The application of the proposed esti-
mation-procedure is demonstrated using Norway-spruce data from Slovakia: Norway-spruce stands
(80-90 years old) were investigated for four characters: height, diameter, crown percentage and ta-

per, measured for each single tree.

Introduction

The broad sense heritability (h‘rz).s. ) of a character, that
is the proportion of the genetic variance to the phenoty-
pic total variance, is an important parameter inbreed-
ing and genetics, because a knowledge of the numeri-
cal magnitude of this heritability is of special importance
for planning breeding programs (for example for the pre-
diction of the gain of selection) and for the examination

of experimental results. The estimation of heritabilities
2

b.s.
assumes knowledge of the phenotypic total variance and

therefore is an essential task. The computation of h

of its genetically caused component.

To compute this component there are different possi-
bilities, which differ in relation to the special object of
the experimental study and depend on the special breed-

ing program.

Some general possibilities are, for example, :
1) Using the covariances between relatives.
2) Using:regression techniques, for example the pa-
rent-offspring-regression.
Using each of these procedures the estimates of
2

h
b.s.
fects between neighbouring plants (Hiihn a-c).

are biased by not considering the competitive ef-

With all these estimation procedures several genera-

tions are necessary.

When working with plant species having very large
generation intervals, for example with perennial plant
species or even forest trees, these estimation procedu-
res are not sufficient because of the long time involved.
Mostly it is necessary to get heritability estimates inthe
early stages of breeding work - and this would be the
case even if it wereonly possible to get some rough esti-
mates or approximate results on broad sense heritabili-
ty.

Methods to estimate hlz) s

without needing progeny tests or crosses, and which

, which can be applied

lead to estimates with satisfactory properties are there-
fore of special importance for breeding work with such
plant species. The proposed method is a generalization
and improvement of the original method of Shrikhande
(1957), which has been further developed by Sakai and
Hatakeyama (1963) and by Sakai and Mukaide (1967); for
this purpose (estimation of hg_s.) this method has been
used frequently in the literature (Sakai, Hayashi and Mu-
kaide (1966), Sakai, Mukaide and Tomita (1968), Ked-
harnath, Chetty and Rawat (1969), Morgner and Horn
(1970), Namkoong and Squillace (1970) et al.). Intwo
former publications (Hiihn a and Hiithn b) we have de-
veloped a generalization of the method of Shrikhande/
Sakai/Hatakeyama/Mukaide to estimate separately the

genetic variance, competitional variance and environ-
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mental variance of a plant population. In this genera-
lization and improvement some of the assumptions of
these authors - especially the assumption that the co-
variance between the genetic and competitional effects
equals zero - were omitted, because experimental in-
vestigations have shown the opposite. This generaliza-
tion of permitting covariances not equal to zero was pos-
sible under the assumption that competitive effects are
genetically caused and controlied. We assumed that, for
the description of the competition properties of a popu-
lation, each genotype X can be assigned two characters,

competitive ability F,, and competitive influence WX’

which are both heredi'f;ry like the usual quantitative cha-
racters.

This generalization and improvement of the method
of Shrikhande/Sakai/Hatakeyama/Mukaide (published
in Hiihn a and Hiihn b) has been developed in these pa-
pers for the following special and simple genetic model:
random mating, one locus with two alleles in equilibrium,
pleiotropic gene action of the two alleles upon the two
characters F and W, equal degrees of dominance in F
and W.

For practical applications, however, this is an un-
realistic case. In the present paper the underlying the-
ory and the estimation-procedure derived have been ge-
neralized further in such a way that it is not now neces-
sary to agree on a definite special genetic model. The
theory, and therefore the estimation-procedure, is also
now valid and applicable to a plant population consisting
of an arbitrary number of different genotypes with ar-
bitrary frequencies, without making any assumptions
about the number of the existing loci, about the number

of alleles, about the mode of gene action etc.

Theoretical Investigations

We propose a population which fulfils the following simp-
lifying assumptions:

1) The plants are regularly dispersed - that is with
equal distances - over the area. Hence it follows that
density is no source of variation - but the genetical and
competitive correlations and variations exist.

2) The plants are of the same age.

3) The considered plant stand is 'sufficiently large'.

4) We give no regard to the fact that the reciprocal
influence of neighbouring individuals is different at dif-
ferent ages and different stages of plant growth. We
assume that it is sufficient to consider the situation at

only one certain stage of life.
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5) A plant is only influenced by its four direct neigh-
bours and the effects of all other neighbouring plants
are negligible.

6) The effect of one plant on another shall be indepen-
dent of the directional position of its competitors. There-
fore, only the genotypical composition of the group of
competitors has any bearing on the resulting effects.

7) The effects of the four neighbouring plants add up
linearly, and we get the phenotypic value PX of plant X

from:

PX:FX+ Z Wi(X) + ey (1)
i(X)

i i i

compe- total compe- en-
titive  titive in- viron-
ability fluence mental
term term term
with:
PX = phenotypic value of plant X.
FX = competitive ability of plant X.
Wi (x) = competitive influences of the four neighbours
of plant X, where the summation-index i(X)
runs over the four neighbours of plant X.
ey = environmental deviation of plant X - defined as

the deviation of the phenotypic value from its
expected value based on the F-effects and
W-effects.

Thus, using model (1), the phenotypic value of a
plant is dependent only on the genotype of this plant and
on the genotypical composition of its neighbourhood.

Finally we will give some further notations:

p = correlation coefficient between the F-values and
the W-values of all plants of the total considered
plant stand, with -1< p < +1.

= genetic variance

competitional variance

= environmental variance

= number of plants per plot (for different reasons
we only consider throughout all following investi-

) 2 _
gations square-plots, e.g. x=n“ =nxn).

o
1]

parameter from F. Smith's empirical law, whose
validity and applicability for the environmental
-component is postulated in this study

W7
1

variance of the means of plots with x plants per
plot
symbol for expectation

= broad sense heritability



M. Hiihn: Estimation of Broad Heritability in Plant Populations: an Improved Method

Historical excursion

Sakai and Hatakeyama (1963) tried to estimate the ge-
netic variance (G) and environmental variance (E)
using Shrikhande's equation:

V§=G/X+E/Xb (2)

To estimate competitional variances and to take compe-
titive effects (which are a main cause for the bias.of the
estimates) into account explicitly, this model (2) was
generalized by Sakai and Mukaide (1967) by adding a
competitional term C in the following form:

V== G/x + E/x° + T_C/x (3)
or
B
xV==G+x E+T.C (4)
X X

with B = 1-b and the coefficient T, of proportionality,
which follows from the assumptions of Sakai's model of
competition. After applying equation (4) on various plot
sizesone gets a system of simultaneous equations, which
can be solved for different values of B - for example
using the method of least squares. For each such chosen
B one obtains estimates of the parameters G, C and E.
Those values Go, Ey, Co, and B, aretaken as estimates
of the unknown parameters, which best fit with the em-
pirical values xVz . This procedure of estimating gene-
tic variances without performing progeny tests has been
used very frequently in recent years: Sakai and Hata-
keyama (1963); Sakai, Hayashi and Mukaide (1966);
Sakai and Mukaide (1967); Sakai, Mukaide and Tomita
(1968) ; Kedharnath, Chetty and Rawat {1969); Morg-
ner and Horn (1970); et al. A critical discussion of
this estimation procedure and of its weak points (for
example the case b = 1) is given by Namkoong and
Squillace (1970).

In order to apply this estimation-procedure it is
necessary to divide the considered plant stand into plots
of various sizes; for various reasons (see, for example,
Hiihn a) we will only consider square plots in all follow-
ing investigations. After dividing the plant stand into
plots of various sizes the means of these plots and their
variances are calculated for each plot size. These va-
riance-values are the empirical data which are necessa-
ry for applying this estimation-procedure.

The purpose of the following studies is to obtain esti-
mates for G, C and E (which includes a broad-sense-
heritability—estimate) making use only of these pheno-
typic variances of plot means for various plot sizes. For
this purpose we need the expectation of the variance of
plot means - expressed as a function of G, C, E andthe
plot size x = nz.

All following investigations are based upon the follow-
ing assumptions:

1) The genotypes of the considered plant stand are
randomly distributed over the field. '

2) Independence of the sources of variation from (1).
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3) Each plot is a random sample of all the genotypes

of the considered plant stand.

Derivation of the system of non-linear equations for

estimation of the broad sense heritability

For this purpose we change the formulation of model (1)

applying the commonly used symbols and we get:

Yij = &5 * Cij * Gij (5)
with
y.. = observed phenotypic value of the jth plant in the ith

1]

plot; i=1,2,...,d; j=1,2, ...,nz.

g.. = competitive ability of the jth plant in the ith plot;

i
Y w

C.. = ..y where the summation v(ij) runsover
4 Gy v(ij)
the four neighbours of the jth plant in the ith plot;
e.. = environmental deviation of the jth plant in the ith

ij
plot {defined as the deviation of the observed pheno-
typic value yij of this plant from its expected value
based on the c-effects and g-effects, e.g.

zy. (g cij))-

e .zy..~(g..+
1 71 1)

Some further notations used in the following text:

d =

number of plots of size n2 = nxn into which thecon-

sidered plant population is divided.

number of plants per plot (we always assume a
plant population with regularly dispersed plants).

= mean of the ith plot

e
.

= total mean

R <<

- g, c c, e, and e denote the analogous defini-
tions for the different components.
Using model (5) we obtain the following analysis of

the phenotypic variance of the plot means:

d
n ( . _—)2

n i=1 n

a o
) Z [(gi.+c1 +ei_)—(g+c+e)]
- d -1

i=1 n

d’ d

L o(g. -8 & (o -B)P
=) Tt ) e

i=1 i=1 n
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dn -2 dn -
Z (e; -e) , Z (g; -8)le; -o)
* da -1 °* d -1
i=1 n i=1 u
( z2)( e) on ( )( c)
g. -glle, -e e, -ellc;, -c
*2 =~ *2 Z =~

n

1
oy

i

Going over to the expectations of the different terms
in this analysis of the variance of the plot means in (6)
we obtain (under the assumptions mentioned above) the

following results:

dn ~y2
s Z (gi. -—g) G )
d -1 -2
i=1 n n
d
0 (6. -3)2
s1), =T "> (&)
i=1 n n

(F. Smith's empirical law for the environmental com-
ponent )

d
L (g, -g)le;, -9)
8 22 i . i

-1
i=1 n
o ( c)( e)
CcC. =-C)le. -e
=4 ZZ L dn_;‘ = (9)
i=1

(because of the independence assumptions).
For the two remaining expectations we obtain after
some theoretical considerations and computations the

formulas (Proof see: Appendix 1):

d
n — —
P Z (g;, -g)lc; -¢) _ 4(n-1)p VGC (10)
d -1 - 3
i=1 n n
d
n — 2
(¢, -c) 2
8 Z 5._1 :4n -2n+zc. (11)
i=1 n

Therefore we get the following result for the expecta-
tion of the variance of plot means:

2
o|vog) - G tefotat oL E L staon) VGO
n n n n n

(12)

Thus we have expressed the expectation of the vari-
ance of plot means as a function of G, C, E, n, p and b.

This relation (12) now can serve for an estimation of
the unknown parameters G, C, E, p and b by setting

for different plot sizes n? using equation (12). From

this one obtains a system of simultaneous non-linear

equations:
V—5=G+C+E (13)
12.
V_=E+QC+E.+.LVGC
2 4 8 b 2
2 4
2
V——-:E-x» 4n” -6n + 2 C 4 E +4(n—1)pVGC .
2 2 4 2b 3
n n n n

To estimate the unknown parameters, for example
the genetic variance G, for a certain plant population
using this proposed method we can proceed, starting
from this system of equations (13), in several different
ways:

A) Itis possible to consider all the parameters in
(13), namely G, C, E, p and b, as unknowns and to
estimate them from equations (13), for example by
least squares method.

B) Based upon biological considerations it would
probably be possible to assign a special definite nume-
rical value to p. Then the unknown parameters can be
estimated from (13) - for example in the manner de-
scribed above: the system (13) of simultaneous non-li-
near equations can be solved for different values of b -
for example using the method of least squares. For each
such chosen b one obtains estimates of the parameters
G, C and E. Then those values GO’ CO’ EO and bO are
taken as estimates of the unknown parameters which best
fit with the empirical values V—2 . This expression 'best

fit' menas precisely: n

V-8 {V—z} 2 . Minimum .
n n

SQResidual Z

n

With this procedure b varies within a certain inter-
val by increments of a certain length - both interval
length and increment length, must be given and defined
before.
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C) Another possibility is to apply the estimation pro-
cedure (B), described above, not only once to a certain
(from biological considerations) given p, but to many
p-values; for this p varies in the interval -1 < p < +1,
with a suitable increment length. For each of these
p-values we apply (B) and obtain estimates for G, C, E
and b for each p-value - with a certain corresponding
5Q-Residual. Finally, those values GO’ Co, EO’ b0 and
%9 could be taken for estimates of the unknown parame-
ters for which this SQ-Residual is a minimum.

By some further considerations it is possible to re-
duce the number of unknown parameters which must be
estimated; therefore the computational procedure can be
reduced and the estimation-procedure be improved by
this modification.

If we introduce the following notations

G* = G/G+C+E; C#* = C/G+C+E; E* = E/G+C+E (14)

= G* and G* + C* + E* = 1 with

<1 and OSE*< 1.

then we have h,g
0G*<1, 0<C

— kO

Because of § V—zl =G + C + E we obtain from (12)
with (14): 1
£|V—2} )
n _ G#*¥ 4n~"-6n+2 o E#® 4(n—1)eVG*C*
§[V—>] ~ 2 *TTa YTt 3 .
{ 12] n n n n
(15)

If the total number N of plants in the consideredplant
population is high enough, and if there exists no positive
and too large a kurtosis y of the frequency distribution
of the phenotypic values yij of this plant stand, then the

following approximate result is valid:
. (18)

This result (16) follows from the unequality, which
can be derived relatively simply from some theoretical

investigations:

V—s 8 {v—}
P) Z

- ﬁv—lﬂ (17)

< I/NL—i*'-I'{T'

For proof, see: Appendix 2.

After applying (16) and putting the relation
E#* = 1 - G* -~ C* into (15) we obtain the equation:

2 2
8 Vn_— _G_:+4n —2n+2C**1—GZb-C*
12 n n n
. 4(!1—1)93VG*C* (18)
n
2

If we now equate for different plot sizes n“:

<

J

< <
=

T

we get a system of simultaneous equations, which is
analogous to the system of equations (13)

22 G* 3., 1-G*-C* ,|GFCE
V— =4 * 8"+ 3 A

2 4

V2

3% _G*, 20, 6 1-G*-C* 8p |C¥C*
V— =9 * 8l ) 27

1z 9

Vs 2

n® _G* 4n-6n+2 , 1-G*-cx
“‘—vl—z 2 1 %

. 4(n-1)93VG,*C* . (19)

n

This system of equations (19) can now serve for an esti-
mation of the unknown parameters.

Compared with the system of equations (13), this
system of equations (19) shows some essential advan-
tages. Firstly, the number of parameters is reduced.
Furthermore, the parameters G#* and C#¥, which have
to be estimated, vary now only within the small inter-
vals 0 G*¥< 1 and 0 < C*< 1, while in applying the
system of equations (13) the parameters G and C, which
have to be estimated there, can vary within intervals
which are much larger. This final argument (namely the
smaller intervals, in which the parameters vary by
using the system of equations (19)) is of particular im-
portance in relation to the possible application of ‘direct
search methods' or 'iteration methods' for estimating
the parameters from such systems of equations.

To also estimate the parameters G¥, C¥, E+, p and
b here in the caseof system (19), it is possible to apply
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the possibilities A), B) and C) for parameter-estimation
previously discussed for the system (13).

In the present study we have used B) and C) in the
following form. When estimating the parameters by least
squares method a certain SQ-Residual has to be mini-
mized. We have evaluated this minimum in the present
formulation of the computer program notby using mathe-
matical procedures of differential calculus (SQ-Resi-
dual' = 0), but by applying 'direct search methods'. With
this, G¥ and C* run from O to 1 in increments of the
length 0.02 and b runs from 0 to 3 in increments of
the length 0.02. Finally, the estimate for E¥* is calcu-
lated with E# = 1 - G - G,

If estimates for G, C and E are also needed one can

obtain such estimates in the following manner:

é =Gx . V—2 = é* - total variance
1
= é* ¢ V—x = é* « total variance

12

Q>
1

>

E = B# . V—— = E* . total variance (20)

1.‘2

In the theory of this estimation procedure the accu-
racy of the estimates, for example the variances of the
estimates for G*, C*, E* and b, are not investigated.
Closely connected with this is the question of the stabi-
lity of the solutions of the system (19), that is the pro-
blem of the stability of the estimates: how do the esti-
mates change if one changes the original experimental
data, i.e. the empirical variances of the plot means.

It is also possible that another method for solving
the system (19) of non-linear equations might result in
better estimates. All these questions concerning the
mathematical and statistical aspect of the proposed esti-
mation~-procedure must still be investigated and clari-
fied. The correctness and applicability of this estima-
tion-procedure is dependent upon a lot of assumptions,
such as: equal distances between the single plants, equal
age of all individuals, random distribution of the genoty-
pes of the plant population, special assumptions refer-
red to the model of our study (model of competition (1)),
validity of F'. Smith's empirical law etc.

In practical applications of the proposed method of
parameter-estimation using real plant po?ulations these
assumptions would hardly ever be realised.

The estimates obtained with this procedurein the pre-
sent form can, therefore, be looked upon for the time

being only as approximate results. But as we have seen

in the Introduction even such estimates are of special
importance for breeding work with perennial plant spe-

cies.

Material and Results

The estimation-procedure described in the previous chap-
ter had been applied to an extensive collection of Nor-
way-spruce-data from Slovakia. Eleven Norway-spruce
stands (80-90 years old) were each investigated by con-
sidering four characters, measured for each single tree:
height, diameter, crown percentage and taper. This ex-
tensive data on Norway-spruce had obligingly been given
to me by Dr. M. Holubcik, Zvolen, Czechoslovakia.

Because Dr. Holubcik and I intend to prepare another
publication, in which we will give and discuss the com-
plete results of the computations of the heritability-esti-
mates for the eleven different plant stands and for each
of the four characters, which are measured in this stu-
dy. Therefore, to demonstrate the applicationof the pro-
posed estimation-procedure for broad sense heritabili-
ty, I will give here in this paper the results for only
two of these plant stands. For these reasons I will not
enter into a detailed description of the plant stands and
the plant material which we used in this study because
the main purpose of this paper is to present the theory
and the statistical estimation-procedure, not to give a
detailed discussionof the numerical results of the broad-
sense-heritability estimates of the different Norway-

spruce stands.

Example 1

Table la. Plant stand No. 51c (that is the original no-
tation according with Dr. Holubcik 's data).
Variance of plot means with different plot si-
zes for the four characters

plot size height diameter crown percentage taper
1x1=1 9.77 47.00 148.15 142.06
2x2=4 3.65 16.29 51.33 44.72
3x3=9 2.15 8.59 27.78 23.90
4x4=16 1.46 6.24 18.96 15.10
5x5=25 1.23 6.25 14.28 13.57
6x6=36 1.12 5.36 10.65 14.52

With this data of the variances of plot menas for dif-
ferent plot sizes we get the following results (the par-
ametertupel with minimal SQ-Residual has been under-
lined).
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Table 1b. Plant stand No. 5ic. Estimates of the parameters p, b, G* = hZ,, C* and E# and SQ-Residual for each
of the four characters height, diameter, crown percentage and taper

character 'height' character 'crown percentage'

0 b G# C#* E#® S5Q-Residual 8 b G#* C* E* SQ-Residual
-1.00 +0.66 0.02 0.10 0.88 1.658310°° -1.00  +0.66 0.36 0.00 0.64 1.4506- 10>
-0.80 +0.66 0.04 0.06 0.90 2.1488-107° -0.80 +0.66 0.36 0.00 0.64 1.4506- 10>
-0.60 +0.66 0.04 0.10 0.86 6.6306-10"'  -0.60 +0.66 0.36 0.00 0.64 1.4506-107°
-0.40 +0.66 0.06 0.10 0.84 1.2159-107° -0.40 +0.66 0.36 0.00 0.64 1.4506-107°
-0.20 +0.66 0.08 0.16 0.76 5.4589- 10" -0.20 +0.66 0.36 0.00 0.64 1.4506- 10>

-7 0.00 +0.66 0.36 0.00 0.64 1.4506- 10>
0.00 +0.60 0.28 0.16 0.56 6.8186-10 5

+0.20 +0.58 0.56 0.02 0.42 1.3980- 10

+0.20  +0.32 0.62 0.24 0.14  8.3330- 10:2 +0.40 +0.14 0.86 0.08 0.06 9.5929-107°
+0.40 +0.46 0.62 0.02 0.36 9.7286 10_5 +0.60 +0.12 0.90 0.04 0.06 6.9019'10-6
*0.60  +0.58°0.360.00 0.64  1.2775710 .58y ,0.20 0.90 0.02 0.08 6.2069-107°
+0.80 +0.58 0.36 0.00 0.64 1.2775- 10
+1.00  +0.58 0.36 0.00 0.64 1.2775°107°  4+1.00 +0.66 0.36 0.00 0.64 1.4506- 10 °
Using the possibility (C) for parameter-estimation Using the possibility (C) for parameter-estimation
(thatis, selection of that parameter-tupel from the com- (thatis, selection of that parameter-tupel from the com-
putations and results of case (B) which shows a mini- putations and results of case (B) which shows a mini-
mum of SQ-Residual) - we get the following estimates mum of SQ-Residual) - we get the following estimates
of the unknown parameters: of the unknown parameters:
htz).s.=°'°8 C*=0.16 E¥=0.76 5=-0.20 5=40.66 hZ  =0.90 &¥=0.02 E¥=0.08 5=+0.80 H=+0.20
character 'diameter’ character 'taper'

0 b G* C*  E*  SQ-Residual o b G* C* E*  SQ-Residual
-1.00 +0.56 0.56 0.00 0.44 1.0447 - 10_4 -1.00 +0.88 0.00 0.24 0.76 2.7633 - 10-6
-0.80 +0.56 0.56 0.00 0.44 1.0447-107* -0.80 +0.80 0.02 0.10 0.88 1.1708-107°
-0.60 +0.56 0.56 0.00 0.44 1.0447-107% >
-0.40  +0.56 0.56 0.00 0.44 1.0447-10"% ~ “0.60 +0.88 0.00 0.24 0.76 2.7633-10 .
20.20  +0.56 0.56 0.00 0.44 1.0447-10-%  -0.40 +0.78 0.10 0.08 0.82 1.6270- 10”

0.00 +0.56 0.56 0.00 0.44 1.0447-10-%  -0.20 +0.82 0.06 0.14 0.80 1.7788- 10'2
+0.20  +0.52 0.64 0.02 0.34 1.0202- 107" 0.00  +0.72 0.46 0.14 0.40 1.2219- 10_6
4+0.40  0.00 0.88 0.08 0.04 7.4463-107>  *0-20 +0.88 0.00 0.24 0.76 2.7633- 10_6'
+0.60  0.00 0.92 0.04 0.04 8.0534-107>  *0-40 +0.88  0.00 0.24 0.76 2.7633-10"
40.80 +0.08 0.92 0.02 0.06 6.1610-107>  +0.60 +0.88 0.00 0l24 0.76 2.7633- 10—2

+0.80 +0.88 0.00 0.24 0.76 2.7633- 10"

+1.00 +0.02 0.94 0.02 0.04 9.3778-107° +1.00 +0.88 0.00 0.24 0.76 2.7633-10"°

Using the possibility (C) for parameter-estimation Using the possibility (C) for parameter-estimation
(that is, selection of that parameter-tupel from the com- (that is, selection of that parameter-tupel from the com-
putations and results of case (B) which shows a mini- putations and results of case (B) which shows a mini-
mum of SQ-Residual) - we get the following estimates mum of SQ-Residual) - we get the following estimates
of the unknown parameters: of the unknown parameters:
ﬁg.sfo.gz E#*=0.02 BE#:0.06 p=+0.80 b=+0.08 ﬁg.sfo.oz C#=0.10 E#:0.88 5=-0.80 b=+0.80
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Example 2
character 'diameter'
Table 2a. Plant stand No. 49b (the original notation ac- P b G* C#* E* SQ-Residual

cording with Dr. Holubcik 's data). Variance
of plot means with different plot sizes for the  _1.00 40.08 0.80 0.00 0.20 5.5913-10"°

four characters s
-0.80 +0.08 0.80 0.00 0.20 5.5913 - 10

_0.60 +0.08 0.80 0.00 0.20 5.5913-107°
plot size height diameter crown perceniage taper ~0.40 +0.08 0.80 0.00 0.20 5.5913 » 10-5
tx1=1 17.20 38.35 165.04 126.09 -0.20 +0.08 0.80 0.00 0.20 5.5913-107°
2x2=4 8.54 14.75 71.21 47.21 -5
2xz=% 8.5 1375 e 5y 20 0.00 40.08 0.78 0.02 0.20 3.9976 10_5
4x4=16 5.59  8.23 33.15 18.15 +0.20 +0.02 0.82 0.02 0.16 3.4539- 10
5x5=25 5.84  6.72 32.91 16.07
6x6=36 5.57  8.14 23.58 6.43  .5.40 +0.08 0.80 0.00 0.20 5.5913-107°
+0.60 +0.08 0.80 0.00 0.20 5.5913-10°°
+0.80 +0.08 0.80 0.00 0.20 5.5913-10"°
5

+1.00 +0.08 0.8 ©0.00 0.20 5.5913 - 10~

With this data of the variances of plot means for dif-

ferent plot sizes we get the following results:
Using the possibility (C) for parameter-estimation

(that is, selection of that parameter-tupel from the com-

Table 2b. Plant stand No. 49b. Estimates of the parame- Putations and results of case (B) which shows a mini-

ters p, b, G* = h§,, C* and E* and SQ-Resi- mum of SQ-Residual) - we get the following estimates

dual for each of the four characters height,

diameter, crown percentage and taper of the unknown parameters:

f2  -0.82 C%=0.02 E¥=0.16 3=40.20 D=+0.02
character 'height' b.s.
[ b G#* C#* E* SQ-Residual
-1.00 +0.00 0.00 0.80 0.20 2.9220-107% character 'crown percentage'
4 p b G* C* E* SQ-Residual

-0.80 +0.18 0.02 0.56 0.42 2.8744-10"
-0.60 +0.14 0.02 0.62 0.36 2.7703-10"%

-1.00 +0.52 0.24 0.00 0.76 1.3660- 104

-0.40 +0.14 0.04 0.60 0.36 2.9039.10"%  —0-80 +0.52  0.24 0.00 0.76 1.3660- 10:1
0.20 10.06 0.02 0.72 0.26 2.8537-107  0-60 +0.52 0.2 0.00 0.76 1.3660- 107"
0.00 0.00 0.00 0.80 0.20 2.9220-30  ~ -0.40  +0.52 0.24 0.00 ©0.76 1.3660- o

/.20 0.00 0.00 0.80 0.20 2.9220-107%  -0-20 +0.52 0.24 0.00 0.76 1.3660- 10
10.40 0.00 0.00 0.80 0.20 2.9220 - 10-% 0.00  +0.52 0.24 0.00 0.76 1.3660- 10"
/.60 0.0 0.00 0.80 0.20 2.0220-107% ~ +0-20 +0.52 0.24 0.00 0.76 1.3660- 10"
/0.8 0.0 0.00 0.8 0.20 2.9220-307¢ ~ +0-40 +0.30 0.62 0.10 0.28 1.1994.107
.00 0.00 0.00 0.8 0.20 2.9220-107  0-60 002 0.78 0.12 0.10 6.6807- 10"
+0.80  ,0.06 0.8z 0.06 0.12 6.5645- 10

+1.00 +0.06 0.84 0.04 0.12 6.4147 - 10

Using the possibility (C) for parameter-estimation Using the possibility (C) for parameter-estimation
(that is, selection of that parameter-tupel from the com- (that is, selection of that parameter-tupel from the com-
putations and results of case (B) which shows a mini~ putations and results of case {B) which shows a mini-
mum of SQ-Residual) - we get the following estimates mum of SQ-Residual) - we get the following estimates
of the unknown parameters: of the unknown parameters:

hg =0.02 C#:0.62 E*-0.36 p=-0.60 b=+0.14 h =0.84 C#=0.04 E*=0.12 5=+1.00 b=+0.06

2
S. b.s.
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character 'taper'

< b G C#* BE* SQ-Residual
-1.00 +0.66 0.16 0.00 0.84 6.1488-10°°
-0.80 +0.66 0.16 0.00 0.84 6.1488- 1070
-0.60 +0.68 0.04 0.02 0.94 2.9946 - 107°
-0.40 +0.68 0.04 0.06 0.90 3.4428-10°
-0.20 +0.68 0.06 0.06 0.88 1.4566-107°
0.00 +0.68 0.10 0.10 0.80 6.6942- 107
+0.20 +0.54 0.50 0.16 0.34 6.1855- 107
+0.40 +0.30 0.76 0.10 0.14 5.5223-107°
+0.60 +0.66 0.16 0.00 0.84 6.1488-10"°
+0.80 +0.66 0.16 0.00 0.84 6.1488-107°
+1.00 +0.66 0.16 0.00 0.84 6.1488-107°

Using the possibility (C) for parameter-estimation
(that is, selection of that parameter-tupel from the com-~
putations and results of case (B) which shows a mini-
mum of SQ-Residual) - we get the following estimates
of the unknown parameters:

=0.50 C%=0.16 E#=0.34 5=+0.20 b=+0.54

~2
hb.s.

Conclusions

In the present paper a new method for estimating broad
sense heritability is developed as a generalization and
improvement of the method of Sakai and Mukaide (1967);
this itself is a generalization and improvement of Sakai
and Hatakeyama's (1963) modification of Shrikhande's
(1957) method to separately estimate the genetic vari-
ance, competitional variance and environmental variance
of a plant population. Using this proposed new estimation-
procedure one obtains estimates for broad sense herita-
bility which are more correct and realistic - because of
the more realistic assumptions proposed in this method
~than the results of former authors who used Shrikhande's
method or some modification of that method.

In the theory of this estimation~procedure the accu-
racy of the estimates as well as the problem of the sta-
bility of the solutions of the system of non-linear equa-
tions, which must be solved to obtain estimates of the
unknown parameters, have not been investigated and
computed until now.

This proposed method for estimating broad sense
heritability has the advantage that it is possible to ob-

tain estimates for genetic variance resp. broad sense
heritability without performing any crosses. This is of
special importance in working with plant species oflarge
generation intervals, for example with perennnial plant
species or even forest trees, where the usual estima-
tion-procedure (covariances between relatives, regres-
sion techniques like the parent-offspring-regression)
are often not sufficient. Mostly it is necessary or im-
portant to get heritability estimates in the early stages
of breeding work - and this would be the case even if it
were possible to obtain only some rough estimates or
approximate results of broad sense heritability, because
it is not possible to wait for the resulis from appropri-

ate progeny tests.

For this situation, Shrikhande's method and there-
fore our proposed method have been developed. Because
the proposed method depends on many simplifying as-
sumptions, it stands to reason that such estimates can

only be considered as approximate results.

Of course one obtains better and more exact estima-
tes for genetic variance resp. broad sense heritability
by performing crosses, i.e. by using progeny tests and
analysing them including the competitive effects. Butour
estimation-procedure gives the estimates immediately -
and that is a very decisive point when working with forest

trees.

For the reasons mentioned above, this proposed‘
estimation-procedure on no account can or should re-
place the performance of appropriate progeny tests, which
give better and more accurate estimates of genetic va-

riance resp. broad sense heritability.

The estimation-procedure theoretically derived in
this paper had been appliced by us to an extensive col-
lection of Norway-spruce data from Slovakia. Eleven
Norway-spruce stands (80-90 years old) were each in-
vestigated by considering four characters, measured
for each single tree, : height, diameter, crown percen-
tage and taper. The most uniform results were found for
the character 'crown percentage ', where the broad sense
heritability for all eleven stands was uniformly high
(0.62-0.94). The character 'diameter’' too shows uni-
formly high estimates for broad sense heritability (0.64-
0.94) with the exception of three stands where h‘tz).S.
was smaller than 10% and one stand with hl?;.s. =0.40.
In the two remaining characters, 'height' and 'taper’,
we found high values as well as very low values for the
broad sense heritability - but the lower values for broad
sense heritability prevailed inboth characters ( 'height':
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four stands with 0.68-0.90, five stands with 0.00-0.16
and two stands with 0.22 resp. 0.48; four
stands with 0.84-0.92, five stands with 0.02-0.12 and

two stands with 0.34 resp. 0.50).

'taper':
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Appendix 1
Proof of formulas (10) and (11)

1a) Proof of formula (10)

d
S (g, -g)le, -¢)
i, ~8/1C, _ 4{n-1)pVGC
g2 = (10)
d -1 3
£ n n
i=1
The definition of 'covariance' gives:
d _ _
(g, -g)le, -0)
832 E 1- L. = 2Kov(g. ,c. ) (21)
dn -1 i.? 7i.
i=1

and for this covariance we obtain the following expres-

sion:
2 2
n n
Z &ij Z °i
Kov(g; ,¢; ) = Kov J=12 , =t (22)
) - n n
2 2
n n
= =7 Kov Z g;: Z N (23)
=1 i=
Using the original meaning of gij and cij we get the
formula:
Kov{g, ,c. ) = Aln) Kov(F ., W) (24)
i.” 7i. n4 X 7X

where: A(n) = number of all possible pairs of two plants,
which are direct neighbours (i.e. neighbours in the same
row or neighbours in the same column in the regularly
dispersed plant stand) in plots with n2 plants per plot.
After applying simple rules of combinatorics we ob-

tain for A(n) the following explicit expression:

A(n) = 4n (n-1) (25)

and therefore with (24) we get:

Kov(g, ,c. )= 201 wovm | w,) (26)
i’ Ti. n3 X "X

Because p denotes the correlation coefficient between
the F-values and the W-values of all plants of the total
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considered plant stand and V(FX) = G and 4V(WX) =C
we obtain the following formula:

) Kov(FX, WX) i Kov(FX, Wx) (27)
- - 1
|/V(FX)-V(WX) EVG C
and we get:
-1,

Kov(Fy, Wy) = 501GC (28)
and - together with (26) - it follows:
2Kov(gi., Ci.) = iﬂﬂ:}_):;’_ \GC | (29)

n

Formulas (21) and (29) together conclude the proof
of formula (10).

1b) Proof of formula (11)

n -2
s Z(Ci.'c) _4anf-6n.2
T -1 = K

(11)

i=1

The definition of 'variance' gives:

d
n (Ci _3)2

§ oot Ve (30)
i=1 n

and for this variance we obtain the following expression:

=i —L4V

=1
=]
Q
—
&
»

The variance of the sum of these ci].—values can be
computed in the following way using well-known mathe-
matical rules as well as the simplifying assumptions
mentioned in the chapter Theorstical Investigations:

_1 (2
V(ci.) = n4 n V(cx) + D(n)Kov(cy,voZ)
+ B(n)Kov(cU, cM) (32)
where:
Cy = c-value of an arbitrary plant X.
D{(n) = number of all possible pairs of two plants,

which are direct neighbours and which are
standing diagonally to one another in the regu-

larly dispersed plant stand in plots with n2
plants per plot (see figure 1).

CysCqg = c-values of two arbitrary plants Y and Z,
which are neighbours and which are standing
diagonally against one another in the regularly
dispersed plant stand (see figure 1).

B(n)

i

number of all possible pairs of two plants -
both in the same row or both in the same co-
lumn in the regulariy disperséd plant stand -
which are separated from each other by one
other plant standing between tﬁese two plants
in plots with n® plants per plat (see figure 2}.
CysCpm = c-values of two arbitrary plant;". U and M, which
are both standing in the same row or in the
same column in the regularly dispersed plant
stand and which are separated from each other
by one other plant standing between these two

plants (see figure 2).

After applying simple rules of combinatorics we ob-

tain for D(n) and B(n) the following explicit expres-

sions:
D(n) = 4 (n-1)2 (33)
B(n) = 4n(n-2) (34)

Now we need explicit expressions for the covariances

Kov(cy, cZ) and Kov(cU, cM):

X X X X X X
x x X xQ b'e X
X X x0 xZ xT X
X xN xY xR x X
X X xS b'e X X
x X X X bs X

Fig.1 Spatial arrangement of diagonal
neighbours Y and Z'

CY=WN+WO+WR+WS

OZ=WO+WQ+WT+W

(35)
R

where W, denotes the W-value of a plant X. With (35)
we get:

Kov(c = KOV(WN+WO+WR+WS‘,

WO +WQ+WT+WR )

v Cz)

Kov(Wo, WO) + Kov(WR, WR)

'zxov(wx, Wy) = 2V(Wy) (36)
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In an analogous manner it is possible to derive an

explicit expression for the second covariance

Kov(cU, CM) :
X x X X X x X
X bd xI b d xL X X

X xH xU xJ xM xR X
X X xK X xS X X

X X X X X X X

Fig.2 Spatial arrangement of plants U and M,
which are separated from each other by one other
plant

CU=WH+WI+WJ+WK (37)
CM:W.]' + WL+WR+WS
and with (37) we get:
Kov(cU, cM) = Kov(WH F W+ W W,
WJ+WL+WR+WS)
= Kov(WJ, WJ) = V(WX) (38)

With (32), (33), (34), (36), (38) and the relation
V(cx) = 4 V(WX) we obtain the following equation:
1

4
n

Vie, ) = 4n?V(W,) + 4(n-1)2. 2V(W,)

+ 4n(n—2)V(Wx) (39)

and after some algebraic simplifications in this formu-

la (39) we get:

4V(Wy) 2
v(o.)z——4——{4n -6n+ 2} (40)
i n
Putting 4V(WX) = C we obtain:
V(e, )= 4R=00r2 . ¢ (41)
n

which concludes - together with (30) - the proof of for-
mula (11).

Appendix 2
For arbitrary random variables X and Y the following
unequality holds (Morgenstern 1968, p.111):

X gi1X kYVariance Y
# 13] - R < et (42)

é gy

where k is a constant with |X/Y| < k and |a| denotes
the absolute value of a.

Now we put X = V— and Y=V,

n2 1'2

Because of V— < V— (resp. V—/V— < 1) and
n2 12 n‘?‘ 12

V— 20, V— >0 we obtain from unequality (42) using

n2 12
k=1:
Vn—2 & lV—;é-} V Variance VIE
NV (ISl S TS . (43)
1 1 1
For & [V—z' we can replace the expression
1
£lV—2-]:G+C+E. (44)
1

We now need an explicit expression for the variance

of V—z— . If we denote with N the total number of plants
1

in the considered plant population and with m , the fourth

4
central moment of the frequency distribution of the pheno-
typic values of the total number of all plants in the con-

sidered plant population the following relation holds:

My N-3 2
Variance of VF = -—N- - m é V? (45)

(see: Schmetterer 1966, p.159).
From {45) we obtain with (44):

__m_4 (N-3)(G+C+E)'2
N

- NN = 1) (46)

Variance of V— =
12

If we now introduce the kurtosis y of the frequency
distribution of the phenotypic values of all plants in the
considered plant stand - we have the kurtosis-definition:

Mg

Y=(G+C+E)2-3 )

and from (47) we can derive the following expression:

m4=('y+3)(G+C+E)2. (48)

If we put (48) in (46) we obtain - after some alge-
braic manipulations - the following relation:

; —-(x _2_) 2
Var1anceofV12 (N+N-1 (G+C+E)”. (49)
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From (49), (43) and (44) we obtain the unequality: sitive and too large a kurtosis y of the frequency distri-
bution of the phenotypic values of this plant stand, then
V;E ¢ [ V_2] 2 the following approximate result is valid:
8 lo—1t -zl < /¥ + == (17)
—= é I V—2] N N-1
1 1
which concludes the proof of formula (17). Vn_z 8 |V?]
If the total number N of plants in the considered é V_.z_ ¥ é [V_z.] . (16)
plant population is high enough and if there exists no po- 1 1
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